G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.
Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).
A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):
A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções são funções das coordenadas espaciais e do tempo.
Quando o potencial não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis e .
A equação que a parte espacial da função de onda obedece é:
conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).
Formulação matemática[editar | editar código-fonte]
Mecânica clássica e mecânica quântica[editar | editar código-fonte]
A dinâmica de uma partícula pontual de massa em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7]
G [DR] = / ,
em que (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e é o potencial em que a partícula se move. Minimizando o funcional ação
G [DR] = /
encontra-se a equação de movimento para esse sistema,
G [DR] = / ,
que é a equação de Newton, desde que .
Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento
,
de maneira que a função hamiltoniana é dada por
,
que para a escolha da lagrangiana acima, tem-se
G [DR] = / .
Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton
G [DR] = / ,
e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
G [DR] = /
onde o parêntese de Poisson é definido como
G [DR] = / .
Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
,
onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
.
Um aspecto importante a ser observado é que os operadores e podem ser representados como os operadores diferencias
G [DR] = /
de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função
G [DR] = / ,
que é a equação de Schrödinger.
Teoria Clássica de Campos[editar | editar código-fonte]
A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com graus de liberdade, que consiste de partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
G [DR] = / .
Esse sistema pode ser estendido facilmente para o limite em que e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
G [DR] = / ,
onde representa o deslocamento da partícula relativa a posição no instante de tempo . Também, define-se as quantidades .
Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que e das derivadas , dessa maneira, o funcional ação pode ser escrito como
G [DR] = / .
Finalmente, a lagrangiana pode ser escrita como
G [DR] = / ,
onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:
G [DR] = / .
Primeiras unificações. Equações relativísticas[editar | editar código-fonte]
Equação de Klein-Gordon[editar | editar código-fonte]
Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
onde
A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
Usando-se a definição relativística de energia
chega-se à equação:
Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.
Equação de Dirac[editar | editar código-fonte]
Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
- A equação deveria ser linear na derivada temporal;
- A equação deveria ser relativisticamente covariante.
A equação obtida por ele tinha a seguinte forma:
Comentários
Postar um comentário