G  [DR] =             =

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .





Tendo formulado a versão relativista e geométrica dos efeitos da gravidade, a questão da fonte da gravidade permanece. Na gravidade newtoniana, a fonte é massa. Na relatividade especial, a massa acaba por ser parte de uma quantidade mais geral chamada de tensor de energia-momento, que inclui densidades de energia e de momento, bem como tensãopressão e cisalhamento.[31] Usando o princípio da equivalência, este tensor é prontamente generalizado para o espaço-tempo curvo. Com base na analogia com a gravidade newtoniana geométrica, é natural supor que a equação de campo para a gravidade relaciona esse tensor com o tensor de Ricci, que descreve uma classe particular de efeitos de maré: a mudança de volume para uma pequena nuvem de partículas de teste que estão inicialmente em repouso e depois caem livremente. Na relatividade especial, a conservação de energia-momento corresponde à afirmação de que o tensor de energia-momento é livre de divergência. Essa fórmula também é prontamente generalizada para o espaço-tempo curvo, substituindo as derivadas parciais por suas contrapartes curvadas-múltiplasderivadas covariantes estudadas na geometria diferencial. Com essa condição adicional — a divergência covariante do tensor energia-momento, e, portanto, de qualquer coisa que esteja do outro lado da equação, é zero — o conjunto mais simples de equações é chamado de equações (de campo) de Einstein:

Equações de campo de Einstein - Graceli.

 [DR] =         /




Do lado esquerdo está o tensor de Einstein, um =a combinação específica livre de divergência do tensor de Ricci  e da métrica. Onde  é simétrico. Em particular,

 [DR] =          /

é a curvatura escalar. O próprio tensor de Ricci está relacionado com o tensor de curvatura de Riemann mais geral

 [DR] =          / 

Do lado direito,  é o tensor energia-momento. Todos os tensores são escritos em notação de índices abstratos.[32] Combinando a previsão da teoria com resultados observacionais para órbitas planetárias ou, equivalentemente, assegurando que o limite de gravidade fraca e baixa velocidade é a mecânica newtoniana, a consta





nte de proporcionalidade pode ser fixada como κ = 8πG/c4, com G a constante gravitacional e c a velocidade da luz.[33] Quando não há nenhuma matéria presente, de modo que o tensor de energia-momento desaparece, os resultados são as equações de vácuo de Einstein,

Os modelos atuais de cosmologia são baseados nas equações de campo de Einstein, que incluem a constante cosmológica , visto que esta exerce importante influência na dinâmica de larga escala do cosmos:

 / 
 [DR] =         /    

onde  é a métrica do espaço-tempo.[123] As soluções isotrópicas e homogêneas dessas equações aprimoradas, as soluções de Friedmann-Lemaître-Robertson-Walker,[124] permitem que os físicos modelem um universo que evoluiu nos últimos 14 bilhões de anos a partir de uma fase inicial quente do Big Bang.[125] Uma vez que um pequeno número de parâmetros (por exemplo, a densidade de matéria média do universo) foi fixado por observação astronômica,[126] outros dados observacionais podem ser usados para testar os modelos.[127] As previsões, todas bem-sucedidas, incluem a abundância inicial de elementos químicos formados em um período de nucleossíntese primordial,[128] a estrutura em larga escala do universo[129] e a existência e propriedades de um "eco térmico" do início do cosmos, a radiação cósmica de fundo.[130]

As observações astronômicas da taxa de expansão cosmológica permitem estimar a quantidade total de matéria no universo, embora a natureza dessa matéria em parte permaneça misteriosa. Cerca de 90% de toda a matéria parece ser matéria escura, que possui massa (ou, equivalentemente, influência gravitacional), mas não interage eletromagneticamente e, portanto, não pode ser observada diretamente.[131] Não existe uma descrição geralmente aceita desse novo tipo de matéria, dentro da estrutura da física de partículas[132] conhecida ou não.[133] Evidências observacionais de pesquisas no desvio para o vermelho de supernovas distantes e medidas da radiação cósmica de fundo também mostram que a evolução do nosso universo é significativamente influenciada por uma constante cosmológica que resulta em uma aceleração da expansão cósmica ou, equivalente, por uma forma de energia com uma equação incomum de estado, conhecido como energia escura, cuja natureza permanece incerta.[134]

Uma fase inflacionária,[135] uma etapa adicional de expansão fortemente acelerada em tempos cósmicos de cerca de 10−33 segundos, foi levantada como hipótese em 1980 para explicar várias observações intrigantes que não eram explicadas pelos modelos cosmológicos clássicos, como a homogeneidade quase perfeita da radiação cósmica de fundo.[136] Medições recentes da radiação cósmica de fundo resultaram na primeira evidência desse cenário.[137] No entanto, existe uma variedade desconcertante de possíveis cenários inflacionários, que não podem ser restringidos pelas observações atuais.[138] Uma questão ainda maior é a física do universo primitivo, anterior à fase inflacionária e próxima de onde os modelos clássicos preveem a singularidade do Big Bang. Uma resposta autoritária exigiria uma teoria completa da gravidade quântica, que ainda não foi desenvolvida.[13





Precessão de apsides[editar | editar código-fonte]

Orbita newtoniana (vermelha) vs a orbita de Einstein (azul) de um planeta solitário orbitando uma estrela

Na relatividade geral, os apsides (o ponto de aproximação mais extremo de um corpo em órbita no centro de massa do sistema) de qualquer órbita sofrerão precessão; a órbita não é uma elipse, mas semelhante a uma que gira em seu foco, resultando numa forma semelhante a uma curva rosa (ver imagem). Einstein derivou primeiro este resultado usando uma métrica aproximada representando o limite newtoniano e tratando o corpo em órbita como uma partícula de teste. Para ele, o fato de sua teoria ter dado uma explicação direta da mudança anômala do periélio de Mercúrio, descoberta anteriormente por Urbain Le Verrier em 1859, era uma evidência importante de que havia finalmente identificado a forma correta das equações do campo gravitacional.[79]

O efeito também pode ser derivado usando a métrica exata de Schwarzschild (descrevendo o espaço-tempo em torno de uma massa esférica)[80] ou o muito mais geral formalismo pós-newtoniano.[81] Isso ocorre devido à influência da gravidade na geometria do espaço e à contribuição da auto-energia para a gravidade do corpo (codificada na não-linearidade das equações de Einstein).[82] A precessão relativista foi observada em todos os planetas que permitem medições precisas de precessão (Mercúrio, Vênus e Terra),[83] bem como em sistemas de pulsares binários, onde é superior a cinco ordens de grandeza.[84]

Na relatividade geral, o deslocamento do periélio σ, expresso em radianos por revolução, é dado aproximadamente por:[85]

 [DR] =         /    

onde






A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 [DR] =         /   

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 [DR] =         /  

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 [DR] =         /   

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein[editar | editar código-fonte]


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 [DR] =         /  

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 [DR] =         /   

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell[editar | editar código-fonte]

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 [DR] =         /  

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

 [DR] =         / 

Comentários

Postagens mais visitadas deste blog